##### arobinson

SG chevron_right Grade: N/A chevron_right Strand: N/A

How many moles are in 40.0 grams of water and explain

Replies 0

##### Kelli

SG chevron_right Grade: N/A chevron_right Strand: N/A

I need help with my math homework

Replies 0

##### shaz

SG chevron_right Grade: N/A chevron_right Strand: N/A

Matrix

Replies 0

##### lina ho

SG chevron_right Secondary 4 chevron_right Geometry and Measurement

Construct A) the perpendicular bisector of side AB B) the angle bisector of angle BCD

Replies 12

##### Mr. T

Bisector of line AB means a special line that cuts across AB separating line AB into 2 EQUAL parts. Perpendicular means this special line is at right angles or 90 degrees to line AB. So check this special line is passes the midpoint on line AB by measuring AM equals BM.

1 year ago
##### Mr. T

Step 1: Place your compass with pointer( the sharp end) on point A.

1 year ago
##### Mr. T

Step 2: Adjust compass to be MORE THAN HALF the length of AB.

1 year ago
##### Mr. T

Step 3: Draw arc to be above and below the line AB.

1 year ago
##### Mr. T

Repeat the same for point B, see Step 1, 2 and 3 and do for point B.

1 year ago
##### Mr. T

Step 4: Join the top and bottom points where the arcs meet. (a) is the perpendicular bisector.Hooray. Check (I): AM is same length as BM. Use ruler on AM and on BM, they should be same length. Check (II): Your newly constructed perpendicular bisector (a) is at right angles, or 90 degrees to AB. Use a protractor for this check.

1 year ago
##### Mr. T

Angle bisector refers to dividing into two equal parts.

1 year ago
##### Mr. T

It is dividing the angle BCD into 2 equal parts

1 year ago
##### Mr. T

Angle BCD refers to angle C. Always look at the MIDDLE alphabet to know which angle they are asking. This case BCD..C is the MIDDLE alphabet and so C is the angle they ask for.

1 year ago
##### Mr. T

Step 1: Put the sharp end of your compasses at point C and make one arc on the line BC (point S) and another arc on line CD (point T).

1 year ago
##### Mr. T

Step 2: Put the sharp end of the compasses at S and make an arc within the lines BC and CD. Do the same at T and make sure that the second arc intersects the first arc.

1 year ago
##### Mr. T

(b) is your angle bisector.Hooray. Check: Use a protractor for angle BC(b) and angle DC(b), they must be equal and so angle BCD is bisected.

1 year ago

##### Sonia

SG chevron_right Grade: N/A chevron_right Strand: N/A

Replies 7

##### Mr. T

Can you rewrite the second part evaluate...cannot be seen properly.

1 year ago
##### Mr. T

Binomial expansion of (2-x)^4 YKTYR EAL Can you show step by step to a student (2-x)^4 this binomial expansion Yes, I can definitely help you with that! The binomial expansion of (a + b)^n can be expressed using the formula: (a + b)^n = nC0 * a^n * b^0 + nC1 * a^(n-1) * b^1 + nC2 * a^(n-2) * b^2 + ... + nCn * a^0 * b^n where nCk represents the binomial coefficient and is given by the formula: nCk = n! / (k! * (n-k)!) Now, let's apply this formula to expand (2 - x)^4: (2 - x)^4 = 4C0 * 2^4 * (-x)^0 + 4C1 * 2^3 * (-x)^1 + 4C2 * 2^2 * (-x)^2 + 4C3 * 2^1 * (-x)^3 + 4C4 * 2^0 * (-x)^4 Simplifying each term using the binomial coefficient formula: = 1 * 2^4 * 1 + 4 * 2^3 * (-x) + 6 * 2^2 * x^2 + 4 * 2^1 * (-x)^3 + 1 * 2^0 * x^4 = 16 - 32x + 24x^2 - 8x^3 + x^4 Therefore, the binomial expansion of (2 - x)^4 is 16 - 32x + 24x^2 - 8x^3 + x^4.

1 year ago
##### Mr. T

The binomial expansion of (a + b)^n can be expressed using the formula: (a + b)^n = nC0 * a^n * b^0 + nC1 * a^(n-1) * b^1 + nC2 * a^(n-2) * b^2 + ... + nCn * a^0 * b^n where nCk represents the binomial coefficient and is given by the formula: nCk = n! / (k! * (n-k)!)

1 year ago
##### Mr. T

Now, let's apply this formula to expand (2 - x)^4: (2 - x)^4 = 4C0 * 2^4 * (-x)^0 + 4C1 * 2^3 * (-x)^1 + 4C2 * 2^2 * (-x)^2 + 4C3 * 2^1 * (-x)^3 + 4C4 * 2^0 * (-x)^4

1 year ago
##### Mr. T

Simplifying each term using the binomial coefficient formula: = 1 * 2^4 * 1 + 4 * 2^3 * (-x) + 6 * 2^2 * x^2 + 4 * 2^1 * (-x)^3 + 1 * 2^0 * x^4 = 16 - 32x + 24x^2 - 8x^3 + x^4

1 year ago
##### Mr. T

Therefore, the binomial expansion of (2 - x)^4 is 16 - 32x + 24x^2 - 8x^3 + x^4.

1 year ago
##### Mr. T

By convention, the value of an empty product is defined to be 1. Therefore: 0! = 1

1 year ago